If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2+22z+21=0
a = 1; b = 22; c = +21;
Δ = b2-4ac
Δ = 222-4·1·21
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-20}{2*1}=\frac{-42}{2} =-21 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+20}{2*1}=\frac{-2}{2} =-1 $
| 0=3+2x−x^2 | | 67w=10.02 | | 6+29=-5(7x-7) | | x/x+8=5/7 | | -4a-4a=1-6a-4a-11 | | 110=y/3+6 | | 18=-4x+7x | | x+2=-58+7x | | -8n=-144 | | 2(4x-1)=3(×+4) | | 3x-1+2x=137-x | | -4(2x+3)=2 | | 5^x+1=19 | | -9=4x-x | | x+17+2x+5=3x-16 | | 4x-1=-1+3x | | -4(2x+3=2 | | 5x+27=122-4x | | 4p-11-p=2+p-20 | | -3(8p+6)-2(4-20p)=3(4+5p) | | 0.25p=4.0 | | 2(4x-8)+10x=56 | | 4(2x+8)=3x-7 | | 1/3x-7=-2/3x+7 | | 0.7x+0.5=6.8 | | x+10=14=+2x | | -9(z+2)=-8z-4 | | 2x-5x=1+x-3x-3 | | 10u-10=4u+8 | | 4(2+4x)= | | 6-4r=5r-6r | | 4x-3+x+28=7x-15 |